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Abstract: Internet of things (IoT) connects a large number of edge IoT devices to produce huge volumes of data. To effectively
manipulate the real-time IoT data, it is essential to integrate edge computing with the cloud computing. This study investigates
how real-time IoT applications benefit from edge computing. Specifically, the authors show how edge computing and cloud
computing can be nicely integrated to build a smart campus environment in National Chiao Tung University (NCTU). Based on
an IoT device management platform called IoTtalk, the authors develop an edge IoT computing system called DromTalk for
dormitory applications in NCTU. Conventional approaches are difficult to interact with IoT servers of different platforms. The
authors’ approach proposes a novel method that uses a cyber IoT device to nicely bridge the IoTtalk server in the cloud and the
DormTalk servers at various dormitory buildings (the edges) without modifying these servers. The authors investigate the
response time performance of the edge DormTalk server, which shows that smartphones can effectively control the dormitory
appliances with good user experience.

1 Introduction
Internet of things (IoT) is one of the mainstreams in information
and communications technology which connects a large number of
edge IoT devices to produce huge volumes of data. Manipulation
of the real-time IoT data consumes significant amount of energy in
a centralised IoT platform. To resolve this issue, shifting the
centralised approach to a distributed structure is essential.
Recently, research on edge computing systems has become
popular, which offers a paradigm of local computation and data
processing of IoT devices to meet the latency/delay requirements,
increases the scalability and energy efficiency of IoT applications.
This paper investigates how real-time IoT applications benefit from
edge computing. Specifically, we show how edge computing and
cloud computing can be nicely integrated to build a smart campus
environment in National Chiao Tung University (NCTU). Since
2016, NCTU has been deploying IoT-based smart campus
applications in several categories [1]:

• Environment sensing includes detection of temperature, CO2,
humidity, PM2.5, wind, rain, ultraviolet, and so on. Fig. 1a
illustrates a micro weather station with environment sensors
deployed in a university farm. The lower part of Fig. 1b shows
the temperature, the pH value, and the conductivity of an indoor
aquarium. Fig. 1c is an indoor plant box with the temperature,
the humidity, the CO2, and other sensors.

• Camera monitoring includes indoor monitoring (the upper part
in Fig. 1b), outdoor monitoring (the left-hand side in Fig. 2a for
NCTU farm), and security monitoring (Fig. 2b) that recognises
the objects for various security purposes.

• Appliance sensing and control includes status detection of
parking space (Fig. 3a), washing machines (Fig. 3b), and dryers
(Fig. 3c). Fig. 2a shows the insect light control where the
control switches in the right-hand side control the insect light
and other farm appliances in the monitored screen at the left-
hand side.

The above applications are created based on IoTtalk [2–4], an
IoT application management platform that can be installed on top
of other IoT protocols such as NB-IoT [5], Arduino [6], and so on.
In [1], we tailored IoTtalk for creation of campus applications. In

our design, the IoT devices and network applications are
modularised and can be conveniently reused through a graphical
user interface (GUI). Therefore, the students with or without
programming ability can easily create IoT innovation with new
applications. We have developed smart applications in various
NCTU fields such as the university library, the student dormitory
buildings, the office buildings, the research buildings, and so on.

This paper uses the smart student dormitory to describe how we
utilise cloud and edge computing for NCTU smart campus. The
paper is organised as follows. Section 2 introduces IoTtalk and
shows how we can use multiple IoTtalk platforms to fit edge and
cloud computing. Section 3 elaborates on DormTalk, an edge
computing environment for student dormitory in NCTU. Section 4
investigates the response time performance of DormTalk.

2 Cloud and edge computing with IoTtalk
This section introduces IoTtalk [2–6]. We first show how IoTtalk
works with machine learning capability. Then we elaborate on how
a smart application can be developed in IoTtalk.

2.1 IoTtalk with machine learning

The IoTtalk platform consists of the device and the network
domains. In the device domain, every IoT device is installed a
software unit called device application [DA; see Fig. 4, (c)–(e)].
The DA is used to communicate with the IoTtalk engine [Fig. 4,
(b)] in the network domain. Besides DA, the IoT device needs to
implement the IoT device application (IDA) unit. The IDA is a
software driver for the IoT device hardware (i.e. sensors,
controller, or actuators). For example, the IDA of a parking device
is responsible for extracting the signal obtained from the
magnetometer, translating it into the binary value (0 for empty and
1 for occupied), and sending the binary value to the DA. 

The network domain of IoTtalk consists of two components: the
GUI for configuring the IoT applications [GUI; Fig. 4, (a)] and the
IoTtalk engine [Fig. 4, (b)]. The IoTtalk engine provides either
MQTT or HTTP-based RESTful application programming
interfaces (APIs). Through these APIs, a DA sends the data to be
manipulated by the IoTtalk engine and/or receives the data from
the IoTtalk engine. The GUI is a web-based user interface for one
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to establish the connections and meaningful interactions among the
sensors and the actuators through machine learning.

In IoTtalk, a device is defined as a set of input and/or output
‘device features’ (DFs). An input DF (IDF) is either a sensor (such
as a magnetometer) or a controller (such as a button). Therefore, in
NCTU's smart campus applications, ‘environment sensing’,
‘appliance sensing’, or ‘appliance control’ are represented by IDFs.
An output DF (ODF) is an actuator [such as an air conditioner
(AC) or the insect light in Fig. 2a] to be controlled by the IoTtalk
engine. In our approach, there is a special cyber IoT device called
‘ML_device’ that serves as the machine learning mechanism for
IoTtalk [7]. We use ML_device [Fig. 4, (f)] to describe the device
feature philosophy as follows. In ML_device, the DA is
responsible for manipulating the IDFs [Fig. 4, (1) and (2)] and
ODFs [Fig. 4, (3) and (4)] to communicate with the IoTtalk engine.
The IDA of ML_device is an AI unit [Fig. 4, (5)–(8)] implemented
with the Python open source tool called scikit-learn [8]. The DA
interacts with the AI unit to perform the machine learning
functions as follows. Through the IoTtalk engine, the Label-O
ODF [Fig. 4, (3)] receives the label from the remote control [Fig. 4,
(e)], and the Feature i ODFs [Fig. 4, (4)] receive the data from the

sensors [Fig. 4, (c)]. The DA sends the sensor values of the features
to the AI unit. The feature extraction module [Fig. 4, (5)] extracts
the desired characteristics of the sensor data to form a feature
vector. To train a machine learning model, both the feature vectors
and the user's control signals [i.e. the labels; see Fig. 4, (3)] are
sent to the machine learning algorithm module [Fig. 4, (6)] to
conduct the model training process, which will generate prediction
results by executing the algorithms. The results together with some
statistics are sent out to IDFs Result-I [Fig. 4, (1)] and the Statis-I
[Fig. 4, (2)] through the DA. Result-I is used to control the
actuators [Fig. 4, (d)]. To enhance the performance of the AI unit,
the ODF values are also used to conduct validation [Fig. 4, (7)] to
tune the hyper-parameters [Fig. 4, (8)] and then fed back to the
machine learning algorithm. The values produced by Stats-I are
typically illustrated in a display actuator, which can also be used to
manually tune the hyper-parameters of the machine learning
model. The detailed operation of the AI unit is out of the scope of
this paper and is treated in a separate paper [7].

2.2 Developing dormitory applications through the GUI

In NCTU, IoTtalk is tailored to build various smart applications in
the dormitory buildings. The platform is called DormTalk. This
subsection shows how the configuration in Fig. 4 can be realised
for the dormitory garden application through DormTalk.

In IoTtalk, the GUI [Fig. 4, (a)] illustrates the IoT devices and
their connections represented by icons and line segments. The GUI
allows one to configure the device features, the connections, and
the functions corresponding to the IoT devices. For example, the
garden application of DormTalk is configured in the GUI as
illustrated in Fig. 5. The project name is called ‘DormGarden’
[Fig. 5, (a)]. The IoT devices used in this project are pre-built as
‘device models’ and can be accessed from the ‘Model’ drop-down
list [Fig. 5, (b)]. When a device model is selected from the list, the
device will be shown in the GUI window graphically. In the GUI,
every device is represented by two icons. The input device icon is
placed at the left-hand side of the window [e.g. Fig. 5, (c–f)].
Inside the device icon, there are several icons that represent the
IDFs of the device. For example, the input device ‘Sensors’ [Fig. 5,
(c)] has IDFs including ‘Soil Humidity’, ‘ATM Pressure’
(atmosphere pressure), ‘Temperature’, ‘UV Strength’ (ultraviolet
strength), and ‘Bug Number’. Similarly, the output device icons are
placed at the right-hand side of the window [Fig. 5, (d and g)]. In
the DormGarden application, Fig. 5 (c and e) implements Fig. 4 (c
and e), respectively. Fig. 4 (d) is implemented by Fig. 5 (d).
ML_device [Fig. 4, (f)] is implemented by ML_garden [Fig. 5, (f
and g)]. To connect an IDF to an ODF, we only need to drag a line
between the corresponding IDF icon and the ODF icon (joins 1–10
in Fig. 5), and DormTalk automatically creates the software to
handle the interaction between them. In the dormitory garden, the
sprinkle, the liquid fertiliser, and the liquid pesticide [Fig. 5, (d)]
are controlled by the throttle valves 1, 2, and 3 [Fig. 5, (e)] through
joins 8–10, respectively. Originally, these values are manually
controlled by the gardener. In DormTalk, we develop the machine
learning algorithm ML_garden to automatically control the valves.
The automatic process is actually built when the devices are linked
together through joins 6 and 7. That is, the garden actuators are
automatically controlled through joins 6 and 7 even if the gardener
does not take any action on the valves. 

3 DormTalk as an edge computing IoT platform
Besides the garden application described in Section 2.2, DormTalk
also implements several applications for a dormitory, including
smart socket [9] and those for washing machines (Fig. 3b), dryers
(Fig. 3c), ACs, indoor aquarium (Fig. 1b), and indoor plant box
(Fig. 1c). Each of them is considered as a project in DormTalk.
This section elaborates on issues for implementing these
applications through cloud and edge computing.

3.1 Cloud computing for smart campus

In NCTU, the smart applications for school buses, parking lots,
dormitory, and others are managed by an Integrated Operation

Fig. 1  Environment sensing examples
(a) Micro weather station,
(b) Indoor aquarium,
(c) Indoor plant box

 

Fig. 2  Camera monitoring examples
(a) Outdoor monitoring (NCTU farm),
(b) Front gate security monitoring
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Center (IOC) that allows the university technical staff to
conveniently administrate all smart campus applications under one
web-based GUI. The NCTU IOC is implemented by a specific
IoTtalk server called MapTalk (a web page illustrated in Fig. 6)
[10]. MapTalk effectively mosaics various IoT applications in a
two-dimensional (2D) map, which can automatically accommodate
IoT applications with few simple steps. In MapTalk, an IoT
application is represented as a coloured button for a drop-down list
[Fig. 6, (a)]. When the button is clicked, the names of all objects
(e.g. buses, dormitory buildings, and so on) of that application are
shown in the list. We can select one or all objects. Then the objects
are shown in the map at their locations. For example, the icon in
Fig. 6 (b) represents a camera, and the icons in Fig. 6 (f and g)
represent school buses with movement history [Fig. 6, (c)]. Fig. 6
(d) illustrates the numbers of available washing machines and
dryers in a dormitory. Fig. 6 (e) gives the PM2.5 level in colour,
where the PM2.5 value for a location is represented by a rounded
square icon with a label ‘P’ and its value is represented in colour.
All applications can be found in the ‘App’ list [Fig. 6, (i)]. The
routing button [Fig. 6, (j)] provides travel route planning by
allowing the student to specify the start and destination locations.
This application is the same as that offered in Google Maps. 

In the early deployment of NCTU smart campus, all
applications were developed together with MapTalk, a centralised

IoTtalk platform installed in a cloud. Based on MapTalk, we have
developed PM2.5 detection (through LoRA and Wi-Fi), parking
(NB-IoT), emergency button, dog tracking (through LoRA, LTE,
Bluetooth, and Wi-Fi), and so on. We have also created IoT
applications at the campus fields including the university library,
student dormitory buildings, research buildings, and so on. New
applications are being developed in these fields. As the number of
applications grows, several issues have appeared in the centralised
approach. First, a huge number of small IoT packets are delivered
between the IoT devices and the IoTtalk server. This type of traffic
is often considered as virus attacks and may be blocked by the
firewall. We have developed quick packet aggregation and
disaggregation for P4 switches to reduce the number of packets
delivered in the network [11]. However, the total amount of
information is still the same. Second, it is more difficult to scale
with the centralised server, and when it fails, all applications are
shut down. Furthermore, when new applications are developed in a
centralised IoT platform, they may accidentally interact with the
old applications. This phenomenon is called feature interaction that
typically occurs in large-scale telecommunications services. To
resolve these issues, we introduce edge computing to NCTU smart
campus. We use the dormitory as a service field example, where a
DormTalk server is installed locally at the dormitory building to
perform edge computing. All applications in the dormitory (which
are implemented as individual projects in DormTalk) are
maintained locally, and the tedious details should not be revealed at
the university IOC level. Therefore, it makes sense to partition the
campus into several service fields (a dormitory, an office building,
university library, and so on), and the IoT applications for each

Fig. 3  Appliance sensing examples
(a) Parking sensor,
(b) Washing machines detector,
(c) Dryer detector

 

Fig. 4  IoTtalk platform with machine learning
 

Fig. 5  Configuring a dormitory garden application in DormTalk
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field are operated by an individual local IoTtalk server tailored for
that service field.

Although the servers handle the applications independently at
their service fields, certain information should be passed to the IOC
for global management and computation. For example, the PM2.5
sensors installed in different service fields are managed in the
corresponding local IoTtalk servers. At the same time, all PM2.5
values from different service fields should also be sent to the IOC
to be shown in the map (see Fig. 6). To do so, we exercise global
and edge computing at the university level and the service field
level, respectively. Consider the example illustrated in Fig. 7. 

In Fig. 7, the AC at each of the three dormitory buildings is
smartly controlled by the local temperature, PM2.5, and humidity
sensors through its DormTalk server [Fig. 7, (1)]. Although the
control is maintained by edge DormTalks, the sensor values are
sent to the monitoring systems at MapTalk [Fig. 7, (2)] for global
computation in the cloud.

In NCTU, we developed several independent edge IoT servers
that need to communicate with MapTalk. In most IoT approaches,
the servers/gateways do not talk to each other transparently. For
example, an oneM2M server [12] typically does not interact with
an AllJoyn server [13]. Instead, tedious work is required to port
AllJoyn devices to connect to the oneM2M server. Such interaction
can be easily achieved in IoTtalk as illustrated in Fig. 8. In this
example, the edge DormTalk1 installed at Dormitory Building 1 is
connected to MapTalk in the cloud through a ‘cyber’ IoT device
called Dorm1. From the viewpoint of DormTalk1, Dorm1 is an

output device [Fig. 8, (a)], and the IDA of Dorm1 is the whole
MapTalk system that will receive the temperature and the PM2.5
values of the building. 

On the other hand, since DormTalk1 sends the sensor values to
Dorm1's temperature and PM2.5 ODFs, from the viewpoint of
MapTalk, Dorm1 is an input device [Fig. 8, (b)], and the IDA of
this device is the whole DormTalk1 system that will send the
sensor values to the temperature and PM2.5 IDFs. For other edge
IoTtalk servers (e.g. FarmTalk and DormTalk2 in Fig. 8), they can
interact with MapTalk through the same way as DormTalk1 does.

3.2 Implementation of the cyber device that bridges edge
and cloud computing

Now we use the dormitory laundry as an example to show how the
structure in Fig. 8 is implemented in the MapTalk and the
DormTalk1 GUIs. In this example, the laundry application tells the
students whether a washing machine or a dryer is available. Fig. 9
shows the LdryRm project implemented in DormTalk1 (i.e. the
edge DormTalk of Dormitory Building 1). In this project, the IoT
devices are selected from the ‘Model’ drop-down list [Fig. 9, (1)]
for configuration. LdryRmWM [Fig. 9, (2)] selected form the
‘Model’ list represents the washing machines in the laundry room,
where the WashMach-I IDF gives the status of multiple washing
machines (e.g. machine 1 has been used for 30 min) and the
LocWM-I IDF gives the location of the washing machines.
Similarly, LdryRmD [Fig. 9, (4)] represents the dryers in the
laundry room with the dryer status (Dryer-I) and the location
(LocDryer-I). Note that the WashMach-I IDF is a sensor that
detects the statuses of multiple washing machines. The technique
for accommodating multiple physical IoT devices in one IDF was
described in [5]. The values of the WashMach-I and the LocWM-I
IDFs are sent to the output device WMStatus [Fig. 9, (6)] for
execution to provide local intelligence such as sending an alert to
inform a student that the washing machine he/she used is stopped.
Similarly, DryerStatus [Fig. 9, (9)] processes the values sent from
LdryRmD [Fig. 9, (4)]. From the viewpoint of DormTalk1,
WMStatus and DryerStatus are the ‘output Dorm1’ devices [Fig. 8,
(a)] where their IDAs are the whole MapTalk server. 

We deployed the Map-Project of MapTalk in the cloud (Fig. 10)
to collect the laundry information from all laundry rooms on
campus. From MapTalk's viewpoint, WMStatus and DryerStatus
are the ‘output Dorm1’ devices whose IDAs include the whole
DormTalk1 system [Fig. 8, (b)]. In Fig. 10, WMStatus is connected
to the Map device through join 5 [Fig. 10 (10)], which results in the
icon shown in Fig. 6 (d). The icon is labelled with ‘W:9’ to
represent that there are nine empty washing machines. Similarly,
DryerStatus is connected to the Map device through join 6 [Fig. 10
(11)], which results in an icon with the ‘D:4’ label as shown in
Fig. 6 (d). This icon represents that there are four empty dryers.
Another application of school bus, i.e. BusTracking is connected to

Fig. 6  NCTU IOC: 2D visual map based on MapTalk
 

Fig. 7  Cloud and edge computing in NCTU smart campus
 

Fig. 8  Connecting MapTalk with the edge Dormtalk1 through the Dorm1
device
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Map through join 7 [Fig. 10 (12)] just like WMStatus and
DryerStatus, and the bus statuses are shown in Fig. 6 (f and g). 

Cyber devices WMStatus and DryerStatus also show that our
techniques can bridge edge and cloud computing well. DormTalk
engine is installed in a dormitory, and it collects and computes data
right there. Obviously, it is an edge computing service. On the
other hand, MapTalk engine is a cloud computing service deployed
in the data centre. Fig. 11 illustrates how the cyber device
WMStatus bridges DormTalk and MapTalk. WMStatus has two
DA interfaces connecting to DormTalk and MapTalk, respectively.
First, it reads the information of the washing machines from
DormTalk [Fig. 11, (1)]. Then, its IDA compute the number of
available washing machines [Fig. 11, (2)]. At last, it provides the
result to MapTalk [Fig. 11, (3)] via IdleWM-I IDF. Therefore, the
computation can be done on the edge, and the communication
overheads can be reduced greatly. Similar ideas can be applied to
other applications to optimise the efficiency of communication and
computation. 

4 Performance of DormTalk
In DormTalk, the actuators (ACs, lights, smart sockets etc.) are
controlled by the sensors or the students (controllers). We have
accommodated smartphones as IoT devices in IoTtalk through a
web-based technique called SmpartphoneTalk [1], and the students
can use their smartphones to access IoT-based smart campus
services without installing any mobile apps. Fig. 12 shows a
smartphone for air condition control. When the smartphone is used

to wirelessly control a dormitory appliance, it is important that the
appliance quickly responds to the student's instruction. Let tm be
the delay between when the student presses the button of the
smartphone and when the appliance responds. In this section, we
investigate two issues about tm. 

First of all, it is important that tm is short enough so that the
student will not continue to press the button. The user experience is
poor if the student feels that the dormitory appliance does not
respond and therefore has to keep pressing the button. Section 4.1
models the probability that if the user experience is good. Also,
when two or more students use the smartphones to compete for a
dormitory resource (e.g. the reservation of a study room), the
delays of the smartphones may cause unfair results. Section 4.2
proposes an analytic model to investigate if the student competition
is fair.

4.1 Performance of DormTalk

Let the user tolerance time tb, i  be the time interval between when
the user presses the bottom for the ith time and the i + 1st time.
Then tb, i is the ‘delay limit’ that the student can tolerate before
he/she attempts to press the button again. Beyond this time limit,
the student will consider that the control message sent to the
dormitory appliance is lost and unhappily press the button again.
This issue was discussed in [9]. We summarise the results here for
the reader's benefit. Then we extend the model to investigate the
fair reservation issue in Section 4.2.

In Fig. 13, assume that tm has the Erlang distribution with the
shape parameter n and the rate parameter λ, that is, the density
function f m tm  can be expressed as

f m(tm) = λntmn − 1e−λtm

(n − 1)! (1)

From (1), the Laplace transform f m*(s)  of f m(tm) is expressed as

f m*(s) = ∫
s = 0

∞
f m(tm) e−stmdtm = λn

(s + λ)n (2)

Let f b, i(tb, i) be the density function of tb, i with the Laplace
transform f b, i* (s). Let tB, k = ∑i = 1

k tb, i, which has the density
function f B, k(tB, k). Then the Laplace transform f B, k* (s)  of tB, k  is the
convolution of that for tb, i (1 ≤ i ≤ k). If tb, i are i.i.d. random

Fig. 9  LdryRm (Laundry Room) Project in DormTalk1
 

Fig. 10  Map project for the laundry rooms in Dormitory 1 (at MapTalk)
 

Fig. 11  WMStatus bridges edge and cloud computing
 

Fig. 12  Smartphone for air condition control: (1) the AC; (2) the
smartphone; (3) the DormTalk engine

 

Fig. 13  Timing diagram for re-pressing the button
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variables, then notation tb, i  can be simplified as tb. The density
function f b, i(tb, i)  and the Laplace transform f b, i* (s) for all i are the
same and are denoted as f b(tb)  and f b, i* (s), respectively. Therefore,
if tb, i  is a gamma random variable with the shape parameter α and
the rate parameter β, the Laplace transform f B, k* (s)  of f B, k(tB, k)  is
expressed as

f B, k* (s) = ∏
i = 1

k
f b, i* (s) = βαk

(s + β)αk (3)

Let random variable K represent the number of times that the
student presses before the appliance responds. Then from (3) and
the derivation in [9], we have Pr [K > k] = Pr[tB, k < tm]

= ∑
j = 0

n − 1 αk + j
j

λ jβαk

(λ + β)αk + j (4)

Since Pr K = 1 = 1 − Pr K > 1 = 1 − Pr[tB, 1 < tm], from (4)
we have

Pr [K = 1] = 1 − ∑
j = 0

n − 1 α + j
j

λ jβα

(λ + β)α + j (5)

For n = 1,  (5) is rewritten as

Pr [K = 1 n = 1] = 1 − β
λ + β

α
(6)

Similarly, substitute n = 2 into (5) to yield

Pr [K = 1 n = 2] = 1 − ∑
j = 0

1 α + j
j

λ jβα

(λ + β)α + j

= Pr [K = 1 n = 1] − (α + 1)λβα

(λ + β)α + 1

(7)

Note that the above results were derived and validated by
simulation in [9].

4.2 Modelling fairness

We have developed a dormitory voting system as a cyber IoT
device that allows the students to vote with their smartphones
through DormTalk. In some dormitory applications, the students
need to compete for the resources through this voting mechanism.
Therefore, the delay tm from when a student presses the smartphone
and when the voting IoT device receives the message must be short
enough so that the ‘first-press–first-serve’ rule for fairness can be
enforced when multiple smartphones are competing the dormitory
resources simultaneously. For example, the students may use the
study room reservation system to reserve a specific study room.
Consider the timing diagram in Fig. 14, where student 1 presses the
button of the smartphone at time τ0, and the message arrives at the
reservation server at time τ3. Student 2 presses the button at time
τ1 > τ0, and the message arrives at the reservation server at time τ2. 

If τ2 < τ3, then the result is not fair to student 1. Let
tm, 1 = τ3 − τ0, tm, 2 = τ2 − τ1, and t3 = τ1 − τ0 > 0. Then the
reservation process is not fair if tm, 2 + t3 < tm, 1. We derive the unfair
probability Pr tm, 2 + t3 < tm, 1  as follows. Let t3 be a random
variable with the density function f G(t3), then

Pr [tm, 2 + t3 < tm, 1]

= ∫
0

∞∫
0

∞∫t3 + tm, 2

∞
f m(tm, 1) f m(tm, 2) f G(t3)dtm, 1dtm, 2dt3

(8)

Substitute (1) into f m(tm, 1)  in (8) to yield

Pr [tm, 2 + t3 < tm, 1] = ∫
0

∞
f G(t3)∫

0

∞
f m(tm, 2)

× ∫t3 + tm, 2

∞ λntm, 1
n − 1e−λtm, 1

(n − 1)! dtm, 1 dtm, 2dt3

= ∫
0

∞
f G(t3)∫

0

∞
f m(tm, 2)

× ∑
j = 0

n − 1 λ j(t3 + tm, 2) je−λ(t3 + tm, 2)

j! dtm, 2dt3

= ∑
j = 0

n − 1 λ j

j! ∫
t3 = 0

∞
f G(t3)e−λt3

× ∫tm, 2 = 0

∞
f m(tm, 2)e−λtm, 2 ∑

l = 0

j j
l

t3
ltm, 2

j − l dtm, 2dt3

= ∑
j = 0

n − 1 λ j

j! ∑
l = 0

j j
l ∫

t3 = 0

∞
f G(t3)t3

le−λt3dt3

× ∫tm, 2 = 0

∞
f m(tm, 2)tm, 2

j − le−λtm, 2dtm, 2

(9)

From the frequency-domain general derivative of the Laplace
transform, for a function f(t) we have

∫
t = 0

∞
t j f t e−stdt = −1 j f * j s

ds j

Therefore, (9) is rewritten as

Pr [tm, 2 + t3 < tm, 1]

= ∑
j = 0

n − 1 ( − λ) j

j! ∑
l = 0

j j
l

d(l) f G*(s)
dsl

s = λ

× d( j − l) f m*(s)
ds j − l

s = λ

(10)

= ∑
j = 0

n − 1 ( − λ) j

j! ∑
l = 0

j j
l

d(l) f G*(s)
dsl

s = λ

× ( − 1) j − l(n + j − l − 1)!
(n − 1)!

λn

(s + λ)n + j − l
s = λ

= ∑
j = 0

n − 1 1
j! ∑

l = 0

j j
l

d(l) f G*(s)
dsl

s = λ

× ( − 1) j − l( − 1) j(n + j − l − 1)!
(n − 1)!

λn + j

(2λ)n + j − l

= ∑
j = 0

n − 1 1
j! ∑

l = 0

j j
l

d(l) f G*(s)
dsl

s = λ

× ( − λ)l(n + j − l − 1)!
2n + j − l(n − 1)!

(11)

If t3  is a gamma random variable with the shape parameter δ and
the rate parameter η, then the Laplace transform of the density
function f G(t3)  is expressed as

f G*(s) = ηδ

(s + η)δ (12)

and (11) is rewritten as
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Pr [tm, 2 + t3 < tm, 1] = ∑
j = 1

n − 1 1
j! ∑

l = 0

j j
l

× ( − 1)lΓ(δ + l)
Γ(δ)

ηδ

(s + η)δ + l
s = λ

× ( − λ)l(n + j − l − 1)!
2n + j − l(n − 1)!

= ∑
j = 1

n − 1 1
j! ∑

l = 0

j j
l

δ + l
l

ηδ

(λ + η)δ + ll!

× λl(n + j − l − 1)!
2n + j − l(n − 1)!

= ∑
j = 1

n − 1
∑
l = 0

j j
l

δ + l
l

(n + j − l − 1)!
j!l!(n − 1)!

× λlηδ

2n + j − l(λ + η)δ + l

(13)

The above derivations have been validated by the simulation
follows the same approach in [9, 14–16], and the details are
omitted. For the dormitory applications considered in this paper
(i.e. the delay measurements in Section 4.3), the discrepancies
between the analytic model and the simulation are small as
illustrated in Fig. 15 (to be elaborated in the next subsection). 

4.3 Numerical examples

We have measured the tm  for DormTalk. Fig. 16 plots the
histogram of tm, which can be approximated as a mix of two Erlang
distributions, where E[tm] = 1027.21  ms. With probability 0.646,
the first tm distribution has the shape parameter n = 2 and the rate
parameter λ = 0.344. With probability 0.354, the second tm
distribution has the shape parameter n = 2 and the rate parameter
λ = 0.361. The patient time tb was measured in [9], which can be
approximated by the gamma distribution with the expected delay
E[tb] = 2047.06  ms and the variance V[tb] = 0.096E[tb]2. 

Both the Erlang and the Gamma distributions are often used for
time complexity analysis in telecommunications [14–17] because
these distributions (or mixtures of the distributions) can be shaped
to represent many distributions as well as the measured data. The
tm  and tb distributions obtained from the measurements are used in
simulation to compute Pr [K = 1] = 0.9703 which indicates that
the user experience is good.

On the fairness problem, we investigate the probability
Pr [tm, 2 + t3 ≥ tm, 1] = 1 − Pr [tm, 2 + t3 < tm, 1] which is the
complement of the unfair probability mentioned in Section 4.2. We
conduct three experiments to simulate the reservation competition
process with t3 approximated by the gamma distribution with
E[t3] = 2047.06  ms and different variances. Fig. 16 plots the
Pr [tm, 2 + t3 ≥ tm, 1] curves against t3 variance ranging from
10−3E[t3]2 to 104E[t3]2. The traced-driven simulation uses the
measured tm, 1 and tm, 2 to obtain Pr [tm, 2 + t3 ≥ tm, 1]. The
distribution-driven simulation uses the mix of two Erlang
distributions to approximately tm, 1 and tm, 2. The analytic analysis
uses (13) to compute the probability.

The discrepancies among the three experiments are at most
0.0258. Hence, the analytic model captures the reality quite well.
In our measurements, V[t3] = 0.096E[t3]2,  and
Pr [tm, 2 + t3 ≥ tm, 1] = 1 . In practice, it is rare to have V[t3] ≥ E[t3]2

and the fair probability Pr [tm, 2 + t3 ≥ tm, 1] ≥ 0.995 when
V[t3] ≤ E[t3]2 in all experiments. Therefore, the ‘first-press–first-
serve’ property is preserved.

5 Conclusion
This paper showed how edge computing and cloud computing

can be nicely integrated to build a smart campus environment in
NCTU. Based on an IoT device management platform called

IoTtalk, we developed edge IoT computing platform called
DormTalk for dormitory applications in NCTU. Conventional
approaches are difficult to support interaction of IoT servers from
different platforms. Our approach proposed a novel solution that
uses a cyber IoT device to nicely bridge the IoTtalk server in the
cloud and the DormTalk servers at the edges without modifying the
servers in different IoT platforms. With the edge DormTalks, the
IoT packet traffic between MapTalk in the cloud and the dormitory
appliances/sensors at the edges can be reduced. Also, our edge and
cloud computing structure allows edge DormTalks to operate
independently from MapTalk, which enhances availability,
scalability, and security. We investigate the response time
performance of the edge DormTalk server, which showed that
smartphones can effectively control the dormitory appliances with
good user experience. We have also investigated the fairness issue
when multiple smartphones compete to control a dormitory
appliance or resources. Our study indicated that with the edge
DormTalk server, the fairness rule for ‘first-press–first-serve’ is
satisfactorily followed.
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